3.574 \(\int \frac{(a+b \cos (c+d x))^2}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=135 \[ -\frac{2 \left (3 a^2+5 b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 \left (3 a^2+5 b^2\right ) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{4 a b F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{4 a b \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

(-2*(3*a^2 + 5*b^2)*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a*b*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*Sin[c
+ d*x])/(5*d*Cos[c + d*x]^(5/2)) + (4*a*b*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (2*(3*a^2 + 5*b^2)*Sin[c +
d*x])/(5*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.10623, antiderivative size = 135, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {2789, 2636, 2641, 3012, 2639} \[ -\frac{2 \left (3 a^2+5 b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 \left (3 a^2+5 b^2\right ) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{4 a b F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{4 a b \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^2/Cos[c + d*x]^(7/2),x]

[Out]

(-2*(3*a^2 + 5*b^2)*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a*b*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*Sin[c
+ d*x])/(5*d*Cos[c + d*x]^(5/2)) + (4*a*b*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (2*(3*a^2 + 5*b^2)*Sin[c +
d*x])/(5*d*Sqrt[Cos[c + d*x]])

Rule 2789

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Dist[(2*c*d)/b
, Int[(b*Sin[e + f*x])^(m + 1), x], x] + Int[(b*Sin[e + f*x])^m*(c^2 + d^2*Sin[e + f*x]^2), x] /; FreeQ[{b, c,
 d, e, f, m}, x]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3012

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*Cos[e
+ f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1)), Int[(b*Sin[e
+ f*x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \cos (c+d x))^2}{\cos ^{\frac{7}{2}}(c+d x)} \, dx &=(2 a b) \int \frac{1}{\cos ^{\frac{5}{2}}(c+d x)} \, dx+\int \frac{a^2+b^2 \cos ^2(c+d x)}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{4 a b \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{1}{3} (2 a b) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-\frac{1}{5} \left (-3 a^2-5 b^2\right ) \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{4 a b F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{4 a b \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (3 a^2+5 b^2\right ) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}-\frac{1}{5} \left (3 a^2+5 b^2\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{2 \left (3 a^2+5 b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{4 a b F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{4 a b \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (3 a^2+5 b^2\right ) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.362037, size = 124, normalized size = 0.92 \[ \frac{-6 \left (3 a^2+5 b^2\right ) \cos ^{\frac{3}{2}}(c+d x) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+9 a^2 \sin (2 (c+d x))+6 a^2 \tan (c+d x)+20 a b \sin (c+d x)+20 a b \cos ^{\frac{3}{2}}(c+d x) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+15 b^2 \sin (2 (c+d x))}{15 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^2/Cos[c + d*x]^(7/2),x]

[Out]

(-6*(3*a^2 + 5*b^2)*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + 20*a*b*Cos[c + d*x]^(3/2)*EllipticF[(c + d*
x)/2, 2] + 20*a*b*Sin[c + d*x] + 9*a^2*Sin[2*(c + d*x)] + 15*b^2*Sin[2*(c + d*x)] + 6*a^2*Tan[c + d*x])/(15*d*
Cos[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B]  time = 7.757, size = 660, normalized size = 4.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^2/cos(d*x+c)^(7/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*a*b*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*
x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))
)+2*b^2*(-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1
/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*co
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)-2/5*a^2/(8*sin(1/2*d*x+
1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(12*EllipticE(cos(1/2*d*x+1/2*
c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+
1/2*c)^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+3*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*
x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^
(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}{\cos \left (d x + c\right )^{\frac{7}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral((b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**2/cos(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), x)